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Outline

• Representation of position and orientation

• Reference Frames

• Representation of position and orientation in 2D and 3D

• Models for transformations between reference frames

• Homogenous coordinates


• Representations for time and motions

• Trajectory models

• Time varying reference frames


• Summary

Source: Many Illustrations / basic material  adopted from P. Corke,  
Robotics, Vision and Control, STAR Vol. 73, Springer Verlag, 2011
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Reference Frames

• Robotics is all about management of reference frames

• Perception is about estimation of reference frames

• Planning is how to move reference frames

• Control is the implementation of  

trajectories for reference frames

• The relation between references frames 

is essential to a successful system
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Representation of position and orientation

• We will make reference to different frames such as A and B

• The transformation between frames will be denoted by the the symbol xi (ξ)

• If we have a point P then we will use AP to denote that P is represented in 

reference frame A

• For transformations between reference frames we will use the notation AξB
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Use of reference frames - example

• Easy to consider
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Use of reference frames - example
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Transformations

• We can compose transformation 

• AξC = AξB ⊕ BξC


• We can represent a point CP in the frame A through the transformation

• AP = (AξB ⊕ BξC) CP
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Basics concepts: 

• A point P is described by a vector that specify the displacement from the 
origin of the reference frame. 


• A set of points that represent a rigid object can be described by a single 
coordinate frame, and its constituent points are described by displacements 
from that coordinate frame 


• The position and orientation of an object’s coordinate frame is referred to as 
its pose


• A relative pose describes the pose of one coordinate frame with respect to 
another and is denoted by an algebraic variable ξ


• A coordinate vector describing a point can be represented with respect to a 
different coordinate frame by applying the relative pose to the vector using 
the . operator


• We can perform algebraic manipulation of expressions written in terms of 
relative poses
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Pose Algebra
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Rotation in 2D

• Rotation Matrices (DCM):  2x2 \in SO(2)

• Rotation Matrices (DCM), 2x2  SO(2)

• Columns of vRb: axes of B in V. In MATLAB notation: [c -s; s c]

• 4 numbers, but only 1D Manifold

∈
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Poses in 2D

• (x,y, ) or (R,t)

• Better: SE(2), next slide

θ
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SE(2)

• [R t; 0 0 1] = 3x3 matrix  SE(2)∈
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Rotations in 3D

• Rotation Matrices (DCM), 3x3  SO(3) 
• Columns of aRb: axes of B in A. In MATLAB notation: [Xb Yb Zb]

• 9 numbers, but 3D Manifold

∈
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Two vector representations

• In some applications it is convenient to talk about direction and orientation. 


• Can you think of any?

(c) Henrik I Christensen

Representing end-effector Pose

• ZE  = approach vector a

• YE  = orientation vector o

• XE  = o x a

(c) Henrik I Christensen

Two vector representations

• In some applications it is convenient to talk about direction and orientation

• Grasping

• Docking


• We can define orientation (o) and direction (a) as two vectors. They complete 
define the rotation matrix R the third column can defined as the orthogonal 
vector n=o x a 

• The resulting rotation matrix is then 
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2D Pose Representation

• In 2D we will represent the pose of an object by (x, y, θ)

• To represent translations we can use simple vector addition


• Pnew = Pold + T

• For rotations we can do simple operations


• Pnew = R Pold 

• To make operations manageable it is easier to use homogenous 

transformations

• Representing the vector with an additional element 


• P = (x, y, θ, 1)T

• Or without orientation


• P = (x, y, 1)T

• We can consider also the 3 dimensional case

(c) Henrik I Christensen

Poses in 3D

• [R t; 0 0 0 1], 4x4 matrix in SE(3)
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Representing 3D Rotations

• Rotation Matrices (DCM)

• Euler Angles


• Eulerian 

• Cardanian

• Gimbal Lock


• Axis-Angle

• Unit Quaternions
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3D Representation

• Basic model - P = (x, y, z, 1)T

• Structure of a transformation matrix


• The relation between reference frames is exactly the same as before

⇠ =


R T
0 1

�
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Representing rotations

• There are two commonly used rotation representations

• Euler rotations are represented by rotations about axes


• ZYZ, XYX, YXY, YZY, ZXZ

• Cardanian type rotations are about all three axes


• XYZ, XZY, YZX, YXZ, ZXY, ZYX

• The Euler representation is widely used in Aerospace and Mechanical 

Dynamics. The most common model is ZYZ, i.e. 


• Represented by the three angles of rotation. 

• Another commonly used representation is pitch-roll-yaw


• Often seen in maritime applications. Typically x direction is forward, y is to the 
right and z is downward. 
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Roll-Pitch-Yaw

Beard, 2011, Small Unmanned Aircraft
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UNIT Quaternions

• 2D:

• 𝜃


• [c𝜃 -s𝜃; s𝜃 c𝜃]


• z = (c𝜃, s𝜃)

• 3D:

• 𝜃r, 𝜃p, 𝜃y

• [r11 r12 r13;r21 r22 r23;r31 r32 r33]

• q = c(𝜃/2) <s(𝜃/2) v>
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Representations of Pose - Overview
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`
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• Robotics is often about movement from a position A to B ( PA → PB)

• Typically we have additional constraints


• Smooth trajectory

• Time constraints

• Maximum speed

• Acceleration

• Jerk


• How can we formulate trajectories that satisfy these constraints?

Time and motion
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Bot & Dolly

Paths (Locus) vs. Trajectories (Locus + Time)
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Smooth trajectories in 1-D

• For representation of trajectories we can use polynomials 

• A typical example is a quintic polynomial


• S(t) = A t5 + B t4 + C t3 + D t2 + E t + F with t ∈ [0, T]

• It will have smooth first and second order derivatives

• An example of such models is the clothoid model for roads in Europe 

 

• An alternative is use of linear segments with parabolic blend


• Smooth trajectories, with linear velocity variations

• The motion has step changes in acceleration

• Where do we see this type of trajectories?


• Lets look at a couple of examples



(c) Henrik I Christensen

5th order polynomial trajectory
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Example code from the RTB
from roboticstoolbox import quintic
tg = quintic(1, 2, 10)
tg
# Trajectory created by quintic: 10 time steps x 1 axes
len(tg)
# 10
tg.q
# array([1.    , 1.0115, 1.0764, 1.2099, 1.3967, 1.6033, 1.7901, 
# 1.9236, 1.9885, 2.    ])
tg.plot()

(c) Henrik I Christensen

Linear trajectory with parabolic blends
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Quintics
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Linear Segment with  
Parabolic Blend
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Pure trapezoidal

from roboticstoolbox import trapezoidal
tg = trapezoidal(1, 2, 10)
tg
# Trajectory created by trapezoidal: 10 time steps x 1 axes
len(tg)
# 10
tg.q
# array([1.    , 1.0278, 1.1111, 1.25  , 1.4167, 1.5833, 1.75  , 1.8889, 1.9722, 2.    ])
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Multiple dimensions, 
Multi-SEGMENT

(c) Henrik I Christensen

Multi-segment trajectories

• Frequently the motion is not simply a motion from A to B, but a more complex 
motion to cover a set of trajectories. 


• We can define a set of via points.

• We can “blend” at the via points to achieve acceleration around those areas, 

but closers to constant velocity elsewhere
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Multi-dimensional case

• The single dimensional case generalizes directly to multiple dimensions / 
multiple axes. 


• Most robot controllers will directly generate trajectories given a specification 
of given constraints


• Example:
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• We could do the same in Cartesian space

• We can define points and do linear interpolation between them


• Animate1 - step change

• Animate2 - smooth motion

Cartesian motion
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Cartesian Motion
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Examples of use of moving reference frames

• Most common example

• Inertial Navigation System (INS)


• Inertial Measurement Unit (IMU)

• Estimation of ego-motion


• Estimation of vehicle motion from GPS + INS/IMU

• Estimation of end-effector motion

• Estimation of motion of people (and gestures)
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Inertial Navigation

• Measure angular velocity with 
gyroscope, acceleration with 
accelerometer


• Integrate over time:

USS Alabama
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Interpolation in 3D

• Suppose 𝛿 = c(𝜃/2) <s(𝜃/2) v> 
is rotation between q1 and q2

• Slerp(q1, q2, t) =  
        q1 ⊕ c(t𝜃/2) <s(t𝜃/2) v> 

q1

q2
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Time-varying coordinate frames

• Handling rotation of coordinate frames is a little more complex

• We can write the derivative of the rotation matrix


• Where


• where omega describes the rotation around each axis

• We can do the transformation directly in homogenous coordinates, i.e. 

S(!) =

2

4
0 �!z !y

!z 0 �!x

�!y !x 0

3

5

Ṙ(s) = S(!)R(t)

T =


S(�✓) �d
0 0

�
+ I4x4
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Summary

• A few foundational concepts on position, orientation, time and trajectories

• Many different models for representation

• Position is relative easy

• Rotation has a number of issues to consider

• Using homogenous transformations often pays off

• We will use reference frames extensively. 

• Robotics is about estimation, control and planning across references frames

• Many more foundational concepts covered in the: 


• Handbook of Robotics, B. Siciliano & O. Khatib, Springer Verlag, 2010 

• Robotics, Vision and Control, P. Corke, Springer Verlag, STAR Volume 73, 

Oct 2011 (incl. MATLAB toolbox) 


