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Outline

» Representation of position and orientation
» Reference Frames
» Representation of position and orientation in 2D and 3D
» Models for transformations between reference frames
* Homogenous coordinates
» Representations for time and motions
« Trajectory models
« Time varying reference frames
« Summary

Source: Many lllustrations / basic material adopted from P. Corke,
Robotics, Vision and Control, STAR Vol. 73, Springer Verlag, 2011
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Reference Frames

Robotics is all about management of reference frames
Perception is about estimation of reference frames
Planning is how to move reference frames

Control is the implementation of
trajectories for reference frames

{F} fived camsern

The relation between references frames
is essential to a successful system

(B} object

(c) Henrik | Christensen

Representation of position and orientation

* We will make reference to different frames such as A and B
+ The transformation between frames will be denoted by the the symbol xi (€)

« If we have a point P then we will use AP to denote that P is represented in
reference frame A

» For transformations between reference frames we will use the notation A&g
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Use of reference frames - example

+ Easy to consider
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Use of reference frames - example

el e ik
s are chown with ks bews . 35°
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Transformations

» We can compose transformation
« Afc-ASs @ BEG

» We can represent a point ©P in the frame A through the transformation
- AP = (A€ ® BEc) CP
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Basics concepts:

» A point P is described by a vector that specify the displacement from the
origin of the reference frame.

+ A set of points that represent a rigid object can be described by a single
coordinate frame, and its constituent points are described by displacements
from that coordinate frame

» The position and orientation of an object’s coordinate frame is referred to as
its pose

+ A relative pose describes the pose of one coordinate frame with respect to
another and is denoted by an algebraic variable §

A coordinate vector describing a point can be represented with respect to a
different coordinate frame by applying the relative pose to the vector using
the - operator

+ We can perform algebraic manipulation of expressions written in terms of
relative poses
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Pose Algebra
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Rotation in 2D

+ Rotation Matrices (DCM): 2x2 \in SO(2)
Yv

—sin@ vV x cos B
e

* Rotation Matrices (DCM), 2x2 € SO(2)
+ Columns of vRb: axes of B inV.In MATLAB notation: [c -s; s ]

* 4 numbers, but only 1D Manifold
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Poses in 2D

- (xy.0) or (RY)
+ Better: SE(2), next slide

TR
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SE(2)

45+
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« [Rt; 00 1] = 3x3 matrix € SE(2)
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Rotations in 3D

- Rotation Matrices (DCM), 3x3 € SO(3)
+ Columns of aRp: axes of B in A. In MATLAB notation: [Xb Yb Zb]
* 9 numbers, but 3D Manifold
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Two vector representations

+ In some applications it is convenient to talk about direction and orientation.

« Can you think of any?
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Representing end-effector Pose

o

a

» Ze = approach vector a
* Yg = orientation vector o
* Xe=oxa
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Two vector representations

* In some applications it is convenient to talk about direction and orientation

» Grasping
» Docking

a

« We can define orientation (0) and direction (a) as two vectors. They complete
define the rotation matrix R the third column can defined as the orthogonal
vector n=o x a

+ The resulting rotation matrix is then
hy Ox dg

R=|n, oy, a
n, 0; a4
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2D Pose Representation

« In 2D we will represent the pose of an object by (x, v, 6)

+ To represent translations we can use simple vector addition
* Prew =Poa + T

« For rotations we can do simple operations
* Pnew = R Poud

- To make operations manageable it is easier to use homogenous
transformations

» Representing the vector with an additional element

*P=(xy,6,1)T
» Or without orientation
° P = (X’ y1 1)T

« We can consider also the 3 dimensional case
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Poses in 3D

- [Rt; 000 1], 4x4 matrix in SE(3)
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Representing 3D Rotations

» Rotation Matrices (DCM)
* Euler Angles
* Eulerian
+ Cardanian
+ Gimbal Lock
» Axis-Angle
+ Unit Quaternions
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3D Representation

1 0 0
+ Basic model - P = (x, y, z, 1)T R(8)= (ﬂ cosf —sinﬁ)

0 sinf cos@

« Structure of a transformation matrix cos® 0 sind
R®=| 0o 1 0

R T —sin@ 0 cos@

g cosB —sin® 0

f 0 1 R.(8)= | sin6 cos® 0

0 0 1

+ The relation between reference frames is exactly the same as before
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Representing rotations

» There are two commonly used rotation representations
« Euler rotations are represented by rotations about axes
« ZYZ, XYX, YXY, YZY, ZXZ
+ Cardanian type rotations are about all three axes
« XYZ, XZY, YZX, YXZ, ZXY, ZYX

» The Euler representation is widely used in Aerospace and Mechanical
Dynamics. The most common model is ZYZ, i.e.

R=R.(0)Ry(0)R.(y)
* Represented by the three angles of rotation.
» Another commonly used representation is pitch-roll-yaw
R =R.(6,)R,(8,)R(6y)
- Often seen in maritime applications. Typically x direction is forward, y is to the
right and z is downward.
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Roll-Pitch-Yaw

RE(6,8,¢) = R (G)RIF(OIRL (¥) 2.4)
1 0 0 cos# 0 —sinf cosyp sinyg O
=0 cos¢d sinc 0 1 0 -sin cosyr 0
0 —sing cosg sinf 0 cosf 0 0 1
Coly Cosy —3g
= | S450Cy: — CaSy  SeSaSy +CaCy SaCp | (2.5)
CaSaCy + SpSy  CaSeSy — Sgly  CaCa

Beard, 201 I, Small Unmanned Aircraft
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UNIT Quaternions

- 2D: . 3D
.« 0
-+ [c6 -s6; s6 6] * 6,66,
+z=(ch, sb)

o [riri2 risran ra 33 r a3

- q=c(62) <s(612) v>

For the case of quaternions our generalized pose is £ ~§ € Q and

& B8, 5 85—y, < s ESY >
which is known as the quaternion or Hamilton product,” and

g =s5<-v>
which is the quaternion conjugate. The zero pose 0+ 1 <0,0, 0> which is the
identity quaternion. A vector v€ R is rotated § - vi— §4(v)§ ' where
§(v) = 0, <v> is known as a pure quaternion.
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Representations of Pose - Overview

representation o} = rotn. transl. dim MATLAB
(x,3,0) eRZx S v v 2D

T € SE(2) Td: T ¥ X 2D se2(x, y)
ReS0(2) RiR, R x v 2D  se2(0, 0, th)
T € SE(2) T, T' v v 2D se2(x, y, th)
(x,3,z,I) e R} x §? v & 3D

R e S0(3) RiR» RT X v 3D  rotx, roty,...
res? X v 3D  trZeul,eul2tr
res? X v 3D  tr2rpyl, rpy2tr
T € SE(3) W 1! v 3D transl(x,y,z)
GeqQ figp ¢ x v 3D quaternion,...
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Time and motion

» Robotics is often about movement from a position A to B ( Pa — Ps)
* Typically we have additional constraints

» Smooth trajectory

» Time constraints

» Maximum speed

* Acceleration

* Jerk
* How can we formulate trajectories that satisfy these constraints?

(c) Henrik | Christensen

Smooth trajectories in 1-D

 For representation of trajectories we can use polynomials
A typical example is a quintic polynomial
+ St)=At5+Bt*+Ct3+Dt2+Et+Fwithte[0,T]
+ It will have smooth first and second order derivatives
» An example of such models is the clothoid model for roads in Europe

+ An alternative is use of linear segments with parabolic blend
+ Smooth trajectories, with linear velocity variations
» The motion has step changes in acceleration
* Where do we see this type of trajectories?

 Lets look at a couple of examples
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5th order polynomial trajectory

Example code from the RTB

from roboticstoolbox import quintic

tg = quintic(1l, 2,
tg

# Trajectory created by quintic:

10)

10 time steps x 1 axes
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len(tg)
# 10
tg.q
# array([1. , 1.0115, 1.0764, 1.2099, 1.3967, 1.6033, 1.7901,
# 1.9236, 1.9885, 2. 1) 5
tg.plot() T
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S{) = At* + Bt* +CP + Dt* + Et + F
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Linear Segment with
Parabolic Blend
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Pure trapezoidal

from roboticstoolbox import trapezoidal
tg = trapezoidal(l, 2, 10)

tg
# Trajectory created by trapezoidal: 10 time steps x 1 axes
len(tqg)
# 10
tg.q
# array([1. , 1.0278, 1.1111, 1.25 , 1.4167, 1.5833, 1.75 , 1.8889, 1.9722, 2. 1)
20
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Multiple dimensions,

M
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Multi-segment trajectories

* Frequently the motion is not simply a motion from A to B, but a more complex
motion to cover a set of trajectories.

» We can define a set of via points.

» We can “blend” at the via points to achieve acceleration around those areas,
but closers to constant velocity elsewhere

S
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Multi-dimensional case

» The single dimensional case generalizes directly to multiple dimensions /
multiple axes.

» Most robot controllers will directly generate trajectories given a specification
of given constraints

+ Example:

Multiaxes motion
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Cartesian motion

» We could do the same in Cartesian space
* We can define points and do linear interpolation between them

* Animate1 - step change
+ Animate2 - smooth motion

Cartesian Motion

20 25 3 35 40 45 50 0 10 20 30 a0 50
Time step Time step

5 10 15
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Examples of use of moving reference frames

* Most common example
+ Inertial Navigation System (INS)
+ Inertial Measurement Unit (IMU)
+ Estimation of ego-motion
+ Estimation of vehicle motion from GPS + INS/IMU
+ Estimation of end-effector motion
+ Estimation of motion of people (and gestures)
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Inertial Navigation

Measure angular velocity with
gyroscope, acceleration with
accelerometer

Integrate over time:

R{k+1) = 6,5(w)R(K) + R(k)

0. _ 0p B
a= "Rz a

Ring-laser Gyro
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Interpolation in 3D

* Suppose & = c(6/2) <s(6/2) v>
Is rotation between g and @2

* Slerp(gi, g2, t) =
qr ® c(t8/2) <s(t6/2) v>
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Time-varying coordinate frames

+ Handling rotation of coordinate frames is a little more complex

« We can write the derivative of the rotation matrix

R(s) = S(w)R(t)

* Where
0 —W, Wy
S(w) = W 0 —Wg
—Wy Wy 0

* where omega describes the rotation around each axis

« We can do the transformation directly in homogenous coordinates, i.e.

S(6 0
T= |: (00) Od :| +I4:v4
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Summary

» A few foundational concepts on position, orientation, time and trajectories
» Many different models for representation
 Position is relative easy
+ Rotation has a number of issues to consider
+ Using homogenous transformations often pays off
* We will use reference frames extensively.
» Robotics is about estimation, control and planning across references frames
» Many more foundational concepts covered in the:
» Handbook of Robotics, B. Siciliano & O. Khatib, Springer Verlag, 2010

* Robotics, Vision and Control, P Corke, Springer Verlag, STAR Volume 73,
Oct 2011 (incl. MATLAB toolbox)
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